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Genetic associations under mixed mating systems: the
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Using elementary algebraic geometry and computational commutative algebra, supported
by the program Macaulay2, we studied and developed operators that define the zygotic
and gametic evolution under a mixed-mating system with parameters s selfing rate, r
recombination rate, and g relative fitness of inbreeders, for any possible combination of
initial zygotic or gametic frequencies with two alleles at each of two loci. We found that
(i) the allelic frequencies are preserved in every generation; (i i) the gametic frequencies
converge to values that depend exclusively on the allelic frequencies; (i i i) every zygotic
population converges to a population in equilibrium with double heterozygotes equally
frequent; (iv) the rate of convergence decreases to arbitrary small values with sufficiently
small values of r or with sufficiently large values of s and (v) as g decreases, the maximal
‘association between the two loci’ occurs with higher values of selfing. We also found
generalizations for the case of several alleles at each locus.

Keywords: Bennett–Binet, two loci, mixed mating, recombination, projective space,
rational map, zygotic algebra

1. Introduction

Outbreeding and self-fertilization are two basic sexual mechanisms present in plants and
animals. The difference between them lies in the ancestry of the reduced gametes, or pro-
nuclei, which fuse to form the zygote.

In selfing, both gametes are derived from the same organism, whereas outbreeding
involves the fusion of gametes derived from two separate individuals.

Although selfing is widespread, it is well known that self-fertilized organisms may
reproduce occasionally by outcrossing (Bell, 1982). Indeed, many hermaphroditic plants
and animals reproduce by a combination of selfing and outcrossing, a method of sexual
reproduction called mixed-mating (Aide, 1986). Such a system has interesting genetic
consequences not present in pure selfing or in pure outcrossing, namely the development
of nonrandom associations between loci, even if such loci are unlinked.
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Haldane (1949) showed that, under partial inbreeding, excesses or deficiencies
of doubly heterozygous and doubly homozygous zygotes became established, even
in populations which are in linkage equilibrium. Bennett & Binet (1956) obtained
mathematical expressions for the ‘gametic and zygotic imbalances resulting from
partial inbreeding’, studying a case of two loci, each with two alleles. Later, Weir
& Cockerham (1973) introduced two loci descent measures, and found genotypic
frequencies and disequilibrium functions for every generation of a population reproducing
with partial selfing with linked loci. In this paper, we generalize these results using
elementary algebraic geometry and computational commutative algebra, powerful tools,
yet underutilized in population genetics. For this purpose, we use the language of genetic
algebras, with selfing introduced as indicated by Holgate (1978) and we construct operators
that describe the zygotic and gametic evolution starting with any possible combination of
zygotic or gametic frequencies for two loci, each with two alleles.

Our approach allows us to (a) find operators that produce the zygotic or gametic
frequencies in any generation from information derived from the previous generation;
(b) clarify the relation between the zygotic and gametic evolution through a commutative
diagram; (c) give a clear account of the pure selfing case; (d) calculate the values of the
Weir and Cockerham parameters at equilibrium; (e) prove that the parameters converge to
those equilibrium values; ( f ) find expressions for the zygotic and gametic equilibrium
states; (g) estimate the asymptotic dynamics of the process; (h) include a parameter
expressing the possible reduced fitness of the progeny derived from inbreeding with respect
to the progeny derived from outcrossing and (i) include a generalization for arbitrary many
alleles at each locus.

2. The model

Consider a very large Mendelian population with no overlapping generations at two loci,
each with two alleles: A0, A1 and B0, B1, whose respective frequencies are p0, p1, q0, q1,
so that

0 � p0, p1, q0, q1 � 1, p0 + p1 = 1 and q0 + q1 = 1. (1)

The population reproduces by a mixed-mating system in which a fraction s of the progeny
is derived from selfing and the rest, 1− s, is derived from random outcrossing. The fitness
of the self progeny is a fraction g of the fitness of outbreeders, standarized to 1.

There exist ten zygotic genotypes:

A0 B0/A0 B0, A0 B0/A0 B1, A0 B1/A0 B1,

A0 B0/A1 B0, A0 B0/A1 B1, A0 B1/A1 B0, A0 B1/A1 B1,

A1 B0/A1 B0, A1 B0/A1 B1, A1 B1/A1 B1. (2)

We separate the two double heterozygotes: coupling A0 B0/A1 B1 and repulsion
A0 B1/A1 B0, because their gametic outputs are different. These two genotypes recombine
at a rate r . When r = 0, the two loci are completely linked; in the case r = 1

2 , they
segregate independently.

The parameters r, s, g satisfy

0 � s, g � 1, 0 � r � 1
2 . (3)
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In the mathematical development, we can ignore conditions (1) and (3); we return to them
only to derive biological consequences.

We have a ten-dimensional zygotic algebra Z, whose basis elements are labelled by
these genotypes in the order given above. A population is identified with a point in
projective space: x = (x0, . . . , x9) ∈ P

9 = P(Z), see (Hartshorne, 1977), where each
homogeneous coordinate xi is the frequency of a genotype in x .

Right-hand multiplication with a basis element is given by right-hand multiplication
with a matrix Mi , for 0 � i � 9, like

M0 = MA0 B0/A0 B0

=




1 0 0 0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
1
2 0 0 1

2 0 0 0 0 0 0
1
2 (1− r) 1

2r 0 1
2r 1

2 (1− r) 0 0 0 0 0
1
2r 1

2 (1− r) 0 1
2 (1− r) 1

2r 0 0 0 0 0
0 1

2 0 0 1
2 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
0 0 0 1

2
1
2 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0




.

The result gives the structure of the population obtained from our population x
outcrossing it with a population of fixed genotype.

We construct the outcrossing matrix Q = x0 M0 + · · · + x9 M9, the selfing matrix
S, whose i th row equals the i th row of Mi for i = 0, . . . , 9; and the mixed-mating
transformation T = sghS + (1 − s)Q, where h = x0 + · · · + x9 is a homogenizing
factor that allows the use of projective space. This factor was first introduced by Holgate
(1978).

The rational map, see (Hartshorne, 1977), ϕ : P
9 → P

9, defined by ϕ(x) = xT is
the evolution operator. It gives the structure of the next generation. The construction of
this model has followed steps similar to those in Vargas & del Castillo (1999) and Vargas
(2000).

3. The gametic and allelic evolution

The four gametes A0 B0, A0 B1, A1 B0, A1 B1 occur with the following frequency in our
population x = (x0, . . . , x9):

y0 = x0 + 1
2 (x1 + x3 + x4), y1 = x2 + 1

2 (x1 + x5 + x6),

y2 = x7 + 1
2 (x3 + x5 + x8), y3 = x9 + 1

2 (x4 + x6 + x8), (4)

where A0 B0 ↔ y0, A0 B1 ↔ y1, A1 B0 ↔ y2, A1 B1 ↔ y3.
There is a four-dimensional corresponding gametic algebra G and an evolution operator

ψ : P3 → P
3, where P

3 = P(G), so that the following is a commutative diagram:
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P
9 ρ−−−−→ P

3

	ϕ

	ψ

P
9 ρ−−−−→ P

3,

where the linear map ρ(x) = (y0, . . . , y3) is given by (4).
If we write y = (y0, . . . , y3) ∈ P

3 and ψ(y) = (z0, . . . , z3), we find that

z0 = y0 − 1
2r(x4 − x5), z1 = y1 + 1

2r(x4 − x5),

z2 = y2 + 1
2r(x4 − x5), z3 = y3 − 1

2r(x4 − x5). (5)

These equations express the recombination phenomenon, as seen in Bennett & Binet
(1956, p. 52). One cannot construct the evolution operator ψ intrinsically inside G, because
the zygotic ingredient x4 − x5 is present; and it cannot be recovered from {y0, . . . , y3}. In
fact, the matrix P has rank 5:

P =




1 0 0 0 0
1/2 1/2 0 0 0
0 1 0 0 0

1/2 0 1/2 0 0
1/2 0 0 1/2 1
0 1/2 1/2 0 −1
0 1/2 0 1/2 0
0 0 1 0 0
0 0 1/2 1/2 0
0 0 0 1 0




and it satisfies

(y0, y1, y2, y3, x4 − x5) = (x0, . . . , x9)P . (6)

The frequency of the alleles can be obtained from the xi using

p0 = (y0 + y1), p1 = (y2 + y3), q0 = (y0 + y2), q1 = (y1 + y3). (7)

The allele frequencies are preserved from each generation to the next.
We write w = (w0, . . . , w9) = ϕ(x), and we pass to the hyperplanes given by x0 +

· · · + x9 = 1 and y0 + · · · + y3 = 1, which are subsets of R
10 and R

4 respectively, in the
affine cones over P

9 and P
3, to obtain the following equations:

w4 − w5 = 2(1− s)(y0 − p0q0)− (srg − sr − 1
2 sg + r)(x4 − x5),

w4 − w5 = −2(1− s)(y1 − p0q1)− (srg − sr − 1
2 sg + r)(x4 − x5),

w4 − w5 = −2(1− s)(y2 − p1q0)− (srg − sr − 1
2 sg + r)(x4 − x5),

w4 − w5 = 2(1− s)(y3 − p1q1)− (srg − sr − 1
2 sg + r)(x4 − x5). (8)

They generalize the second equation of Bennett & Binet (1956, p. 52).
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Equations (5) and (8) suffice to understand the gametic evolution and part of the zygotic
evolution. Following Bennett and Binet, we observe that there are four two-dimensional
vector spaces, contained in the algebra of polynomial functions over R

10 × R
4, invariant

under an operator induced by both ϕ and ψ . These are generated by x4 − x5 and one of

y0 − p0q0, y1 − p0q1, y2 − p1q0, y3 − p1q1.

These four quantities are called linkage disequilibria. It follows from (8) that they have
the same absolute value for any given population x . Furthermore, the evolution operator in
each invariant plane is given by the matrix

E =
(

1 ∓ 1
2r

±2(1− s) −(srg − sr − 1
2 sg + r)

)
.

PROPOSITION 3.1 If s < 1 and 0 < r < 1
2 , then E is a contraction: E is diagonalizable

with eigenvalues of absolute value less than 1.

Proof. The polynomial p(λ) = det(λ− E) satisfies

p(0) = det E = sg( 1
2 − r) > 0,

p(s) = −(1− s)s[1− ( 1
2 − r)g − r ] < 0,

p(1− r) = −sr [1− ( 1
2 − r)g − r ] < 0,

p(1) = (1− s)r > 0. (9)

Hence, p(λ) has two positive real roots: one between 0 and s and the other one between s
and 1. �

We observe that the biggest root is also bigger than 1− r .
Starting with a point x = x (0) ∈ R

10 over P
9 and a corresponding point y = y(0) ∈ R

4

over P
3, let x (n) and y(n) be the trajectories that evolve from x and y. The fact that E is a

contraction implies that

x (n)
4 − x (n)

5 → 0,

y(n)
0 → p0q0, y(n)

1 → p0q1, y(n)
2 → p1q0, y(n)

3 → p1q1,

as n→∞. (10)

Equations (9), indicate that the rate of convergence for (10) decreases with larger values
of s and with smaller values of r .

PROPOSITION 3.2 If s < 1 and r = 1
2 , then (10) holds.

Proof. In this case, the eigenvalues of E are 0 and 1
2 (1+ s). �

4. Pure selfing case

The case s = 1, which occurs when all the progeny is derived from selfing, is extremely
simple; and our language is fit to exhibit this simplicity.
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The zygotic evolution operator reduces to ϕ(x) = x S. The matrix S is diagonalizable,
with positive eigenvalues, the largest of which is 1, with corresponding eigenspace
generated by the rows of the matrix




1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1


 .

Hence, limn→∞(x0, . . . , x9)Sn = (x0, 0, x2, 0, 0, 0, 0, x7, 0, x9).
Thus, in this situation, only the double homozygotes persist, with respective zygotic

equilibrium frequencies:

x0 = x0

x0 + x2 + x7 + x9
, x2 = x2

x0 + x2 + x7 + x9
,

x7 = x7

x0 + x2 + x7 + x9
, x9 = x9

x0 + x2 + x7 + x9
.

The gametic equilibrium frequencies y0, . . . , y3 satisfy

y0 = x0, y1 = x2, y2 = x7, y3 = x9.

At equilibrium, we have y0− p0q0 = y3− p1q1 = Γ , y1− p0q1 = y2− p1q0 = −Γ ,
with Γ = y0 y3 − y1 y2.

5. The fixed points

From now on, we assume that s �= 1.
The map ϕ has fixed points with closure given by the ideal I generated by the 2 × 2

minors of the 2× 10 matrix with rows x and ϕ(x).
At this point, one may try to guess the solutions for the system of equations I ;

alternatively, consider the polynomials in p0, p1, q0, q1 and the xi obtained from

p0(y2 + y3)− p1(y0 + y1), q0(y1 + y3)− q1(y0 + y2) (11)

by elimination of the yi using (4), call them w0, w1. Form the ideal J = ideal (w0, w1);
and solve a system of linear equations contained in the ideal K = saturate ((I + J ) : h),
see (Eisenbud, 1995). The ideal J expresses the invariance of the alleles, while K discards
points on the hyperplane Z(h).

The solutions form the following irreducible surface S of degree 8:

xu =
∑

3(i+k)+ j+l=u

Ti j,kl , for u = 0, 1, 2, 3, 4;

xu =
∑

3(i+k)+ j+l=u−1

Ti j,kl , for u = 5, 6, 7, 8, 9; (12)
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where

c = (1− r)2 + r2, F = sg

sg − 2s + 2
,

Φ = sg{[sg − 2(1− s)]c − 2sg}
(sg − 2s + 2)[sgc − 2(sg − s + 1)] , ∆ = Φ − F2,

Ti j,kl =
[

Fpiδik

n∑
t=0

pt + (1− F)pi pk

][
Fq jδ jl

n∑
s=0

qs + (1− F)q j ql

]

+∆pi q j

[(
δik

n∑
t=0

pt

)
− pk

][(
δ jl

n∑
s=0

qs

)
− ql

]
. (13)

5.1 Observations

Regarding these expressions, we note:

(1) The symbols δik and δ jl are used for the Kronecker delta, so that δik = 1 if and only
if i = k; and δik = 0, otherwise.

(2) The solutions are homogeneous polynomials in pt , qs . This is in order to qualify as
valid projective geometry entities.

(3) We have considered only the case with two alleles (n = 1), but our result (13)
allows arbitrary values for n. The next remark proves the validity of (13) for the
case of more than two alleles at each locus.

(4) It turns out that we have calculated the parameters F,Φ and ∆, described by Weir
and Cockerham as ‘inbreeding coefficient’, ‘probability that an individual chosen
at random is autozygous at both loci’ and ‘a measure of the association between
the two loci’ for the fixed points; and we will prove in the next section that every
biologically relevant point converges to a fixed point.

(5) The parameters F,Φ and ∆ have thus probability and biology content, although our
methods have used no probability.

(6) Our solutions generalize those obtained by Haldane (1949), and also by Kimura
(1958) and Weir & Cockerham (1973). We have adopted the compact notation of
Nagylaki (1992). The substitution g = 1 produces the values obtained by these
authors.

(7) The parameter F satisfies 0 � F � 1. Hence, 0 � (1− F) � 1.
(8) It is easy to see that ∆ � 0 with ∆ = 0 if and only if s = 0, 1.
(9) Equations (13) give the frequency of each ‘ordered’ zygotic genotype, while

equations (12) give the same answer for the ‘unordered’ or true genotypes in case
n = 1. The ‘unordered’ genotypes were the ones used to construct the algebra Z.
There are 16 ‘ordered’ zygotic genotypes for n = 1.

(10) The substitution g = 1 for two alleles, yields the fixed points given in Bennett &
Binet (1956), validating the correction indicated in Nagylaki (1992).

(11) If i �= k and j �= l, then

Ti j,kl = Tkj,il = Til,k j = Tkl,i j = [(1− F)2 +∆]pi pkq j ql .

The coefficient (1− F)2+∆ does not involve any allelic frequency, it only involves



334 J. A. VARGAS AND R. F. DEL CASTILLO

the parameters r, s, g. Allowing a parametric coefficient, any product pi pkq j ql with
i �= k and j �= l, occurs as Ti j,kl .

(12) If i �= k and j �= l, then

Ti j,il = Til,i j , Ti j,k j = Tkj,i j .

(13) The formulae (13) also give answers in the case the loci A and B have n+1 and m+1
alleles respectively, with n �= m: Assuming m < n, we write qm+1 = · · · = qn = 0,
to obtain possibly non-zero values only for Ti j,kl with j, l � m; and these values are
given by (13) with the index of all sums involving the qs going from 0 to m.

(14) The case m = 0 of the preceding observation is equivalent to the one-locus case.
Hence, the frequency of the ‘ordered’ zygote Ai A j is

Fpiδi j

n∑
t=0

pt + (1− F)pi p j ,

while the frequency of the unordered zygote Ai A j is

Fpiδi j

n∑
t=0

pt + (2− δi j )(1− F)pi p j .

(15) We introduce the following notation for i �= k, j �= l:

ti j,kl = Ti j,kl + Tkj,il + Til,k j + Tkl,i j ;
ti j,il = Ti j,il + Til,i j , ti j,k j = Ti j,k j + Tkj,i j ;

ti j,i j = Ti j,i j ; (14)

in order to have for 0 � i, j, k, l � n, the equation

ti j,kl =
[

Fpiδik

n∑
t=0

pt + (2− δik)(1− F)pi pk

]

×
[

Fq jδ jl

n∑
s=0

qs + (2− δ jl)(1− F)q j ql

]

+(−2)(2−δik−δ jl )∆pi q j

[(
δik

n∑
t=0

pt

)
− pk

][(
δ jl

n∑
s=0

qs

)
− ql

]
. (15)

The coefficient ∆ = D(r, s, g), called identity disequilibrium by Weir & Cockerham
(1973), is graphed as a function of the parameter s, with the indicated values for the other
parameters, in Figs 1 and 2.

6. Geometric interpretation

There are
(n+2

2

)
monomials of degree 2 in n + 1 variables; and we associate a point in

P(n+2
2 )−1 to a zygotic population with one locus and n + 1 alleles. Observation 14 means
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FIG. 1. ∆ = D(r, s, 1).
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FIG. 2. ∆ = D( 1
2 , s, g).

that the fixed points of the appropriate evolution operator acting on P(n+2
2 )−1 have closure

equal to the image of the Veronese embedding of degree two P
n → P(n+2

2 )−1, followed by

an automorphism of P(n+2
2 )−1, the composition being d : Pn → P(n+2

2 )−1 with

d(p0, . . . , pn) =
(

. . . , Fpiδi j

n∑
t=0

pt + (2− δi j )(1− F)pi p j , . . .

)
. (16)

This parametrization generalizes our results in Vargas & del Castillo (1999), and the last
equations of Weir & Cockerham (1973, p. 258).

The zygotic algebra Zn for two loci each with n + 1 alleles is obtained from the
corresponding gametic algebra Gn by commutative duplication.

The zygotic genotypes, which are used to construct Zn are all expressed as Ai B j/Ak Bl

with 0 � i, j, k, l � n, with the identifications Ai B j/Ak Bl = Ak Bl/Ai B j . If i �=
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k, j �= l, then the genotypes Ai B j/Ak Bl and Ai Bl/Ak B j are different, and are capable of
recombination.

The frequency of each Ai B j/Ak Bl in a stable population with given allelic frequencies
p0, . . . , pn and q0, . . . , qn is Ti j,kl , before any identification is made.

Starting with the vector space Zn , we may further identify Ai B j/Ak Bl with
Ai Bl/Ak B j . Formally, we construct the vector space An with basis {Ai Ak B j Bl}, where
each Ai Ak B j Bl is one representative for the class of Ai B j/Ak Bl under all of the above
identifications.

An is a homomorphic image of the vector space Zn , and there is a natural projection

P(Zn)→ P(n+2
2 )

2−1 = P(An).
An classifies the zygotic genotypes up to their ‘allelic content’, (see Holgate, 1978).

The frequency of Ai Ak B j Bl in a stable population is now ti j,kl .

Observation 15 asserts that the projection in P(n+2
2 )

2−1 = P(An) of the closure of the
fixed points in P(Zn) of the appropriate evolution map is the image of the composition
β ◦ σ ◦ (d × d), where

P
n × P

n d×d−→ P(n+2
2 )−1 × P(n+2

2 )−1 σ−→ P(n+2
2 )

2−1 β−→ P(n+2
2 )

2−1, (17)

d is given by (16), σ is the Segrè map: σ((yik), (z jl)) = (xi j,kl) with xi j,kl = yik z jl , and

β ∈ PGL
(n+2

2 )
2−1
= Aut (P(n+2

2 )
2−1) is the Bennett–Binet automorphism.

We now order and partition the basis of An in three parts, so that the first part consists
of the double heterozygotes and the last part contains all double homozygotes leaving in
the middle part the remaining elements.

With respect to this partitioned basis, the automorphism β can be expressed as I + B,
where I is the identity matrix and B is the partitioned matrix

B =

C0 C1 C2

0 0 0
0 0 0 =





+ − +

0 0 0
0 0 0


 ,

such that C0 = 4bI , with I an identity matrix of the appropriate size, C1 a matrix with
non-zero entries equal to −2b; and C2 a matrix with non-zero entries equal to b, with

b = ∆
4(1− F)2

. (18)

The signs of the non-zero elements of C0, C1 and C2 are as indicated in view of
Observations (7), (8) and (15). These signs express the increased homozygosity and
heterozygosity that we call the Bennett–Binet effect.

7. The convergence

In this section, we always have n = 1. Recall that Z = Z1 is the zygotic algebra for two
loci. We write Z for the one-locus zygotic algebra.
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Let θ1, θ2 : P9 = P(Z)→ P
2 = P(Z) be the linear projections defined by

θ1(x) = (x0 + x1 + x2, x3 + x4 + x5 + x6, x7 + x8 + x9),

θ2(x) = (x0 + x3 + x7, x1 + x4 + x5 + x8, x2 + x6 + x9). (19)

These maps describe the natural omission of one locus. They both factor through the
linear map τ : P9 → P

8 = P(A1) defined as

τ(x0, . . . , x9) = (x0, x1, x2, x3, x4 + x5, x6, x7, x8, x9). (20)

The projection τ originates from the natural map Z1 → A1.
We have a commutative diagram

P
2 θ1←−−−− P

9 θ2−−−−→ P
2

	η

	ϕ

	η

P
2 θ1←−−−− P

9 θ2−−−−→ P
2,

where η is the evolution operator for one the locus model studied in Vargas & del Castillo
(1999).

The convergence of the trajectories defined by each η is very fast, as seen in Vargas &
del Castillo (1999), so that a fixed point is reached in each P

2 before the convergence (10)
is achieved for most points x with x4 �= x5.

We claim that every point x ∈ P
9, such that x, θ1(x), θ2(x) and ρ(x) are not

fundamental points for ϕ, η and ψ , as applicable, converges to a point fixed under ϕ.
In order to prove this, we may assume that θ1(x), θ2(x) and ρ(x) are already fixed.

Choose a, b ∈ P
2 fixed under η, for each one-locus case, to have θ−1

1 (a) ∼= A
7 ∼= θ−1

2 (b);
and assume x ∈ (θ−1

1 (a) ∩ θ−1
2 (b)).

Then we choose the unique point c ∈ ρ(θ−1
1 (a) ∩ θ−1

2 (b)) ⊆ P
3 with ψ(c) = c, and

write K = Z(x4 − x5), to have

Fp = (θ−1
1 (a) ∩ θ−1

2 (b) ∩ ρ−1(c)) ∩ K ∼= A
3,

where Fp contains a unique point p ∈ P
9, fixed under ϕ; and identified with the origin of

A
3.

We may now assume x ∈ Fp. The set Fp is invariant under translation by the row
space of the matrix


 0 −1 1 1 0 0 −1 −1 1 0
−1 1 0 1 0 0 −1 0 −1 1
1 −2 1 −2 2 2 −2 1 −2 1


 . (21)

The action of the evolution operator ϕ on any such Fp, with respect to the basis formed
by the rows of (21), is given by the matrix

sg

sg − s + 1




1
2 0 0
0 1

2 0
0 0 r2 − r + 1

2


 .
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Hence, ϕ induces a linear contraction on Fp with centre p. This implies that any point
x ∈ P

9, such that x, θ1(x), θ2(x) and ρ(x) are not fundamental points for ϕ, η and ψ , as
applicable, converges to a fixed point.

8. The generalized gametic and allelic evolution

We fix two loci, each with n+ 1 alleles: A0, . . . , An and B0, . . . , Bn . Then we have that a
given population has associated to it two points p, q ∈ P

n , each corresponding to a locus,
where p = (p0, . . . , pn) and q = (q0, . . . , qn) have homogeneous coordinates such that
pi is the frequency of Ai and q j is the frequency of B j .

There are (n + 1)2 gametic genotypes Ai B j for i, j = 0, . . . , n.
We write yi j for the frequency of Ai B j in our population, to study the point y =

(y00, . . . , ynn) ∈ P
(n+1)2−1.

Every biologically relevant point converges to a fixed point, and in the case y is a fixed
population, we have that

yi j =
n∑

k,l=0

Ti j,kl = pi q j

( n∑
k=0

pk

)( n∑
l=0

ql

)
. (22)

We can use
∑

pk = 1 = ∑
ql , to see that at equilibrium, the gametic frequencies are the

products of corresponding allelic frequencies, and the closure of the set of fixed points in
P

(n+1)2−1
of the appropriate gametic evolution operator is given by the homogeneous ideal

generated by all quadratic equations

yi j ykl = yil yk j ; with i, j, k, l = 0, . . . , n. (23)

It is easy to see, using a one-locus model, that the allelic frequencies are preserved
from each generation to the next. This is basically because recombination only rearranges
alleles, and the selection parameter g acts symmetrically on them.

9. Discussion

We have found that convergence towards the fixed points is like the convergence of power
series with base

w1 = sg

2(sg − s + 1)
(24)

or w2 with

p(w2) = w2
2 − [sr(1− g)+ 1

2 sg − r + 1]w2 + sg( 1
2 − r) = 0, (25)

which is the characteristic polynomial of matrix E in Section 3.
At any one single locus, the convergence is fast, like a power series with base w1. This

is also the case for the convergence after gametic equilibrium. The inclusion of inbreeding
depression accelerates this convergence, because g < 1 implies

w1 = sg

2(sg − s + 1)
<

s

2
. (26)
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FIG. 3. Linkage disequilibria.
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The potentially slow convergence takes place at the gametic level, the ‘linkage
disequilibria’ y0 − p0q0, etc. are intertwined with the behaviour of the zygotic frequency
difference x4 − x5.

Our base w2 is close to 1, slowing the gametic convergence, whenever s is close to 1
or r is close to zero. Thus, we are in agreement with Bennett & Binet (1956).

Weir & Cockerham (1973) claim that slow convergence, comparable with that of a
power series with base w3 satisfying

w2
3 −

λ+ s + 1

2
w3 + λs

2
= 0 (27)

occurs, symmetrically, for λ and s close to unity, for a parameter λ that they introduced.
Their result agrees with ours because their parameter is related to recombination r by the
equation

λ = 1− 2r . (28)

The effect of a fitness of inbreeders g < 1 on the gametic convergence is a marginal
increase in the speed of this convergence.

Figure 3 shows the behaviour through time of the common absolute value of all linkage
disequilibria for the indicated parameters. Here, in all graphs, we start we the same initial
population

(0·005369, 0·016107, 0·268456, 0·013423, 0·033557,

0·375839, 0·107383, 0·026846, 0·080537, 0·072483).

The keen scrutiny on two-loci models, derived from the descent measures of Weir &
Cockerham (1973), has allowed us to pass from two alleles at each loci to an arbitrary
number of alleles. We have valid results for the fixed points and the convergence towards
them in the general case, basically because we could prove the convergence to zero of
all linkage disequilibria; then the remaining parameters F and Φ or ∆ converge to values
calculated using two alleles per locus.
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